Mission Edit Manual:

Note: This manual is not complete; It does not yet address the specifics of Trigger conditions and actions, which actually makes the bulk of mission scripting. This is just a primer until the next installation.
The missions that you play in Slave 1: Shadow Hunter are made from scripts. If you’re familiar with programming, you already know what I’m talking about. For those of you who aren’t programmers, scripts are basically text that you type to command something, in this case, the Slave 1: Shadow Hunter’s game engine. A simple mission script, for example, can display a text message during the game, given a start time, and a duration time. It would look something like this:

> 6000
5000
Admiral Rytag: Welcome BobaFett. <END>

The > tells the game engine to get ready to read the command. If I had written this like so:

; 6000 5000 Admiral Rytag: Welcome BobaFett. <END>

The ; would have been read as a comment, that is, the game will skip the entire line.

The 6000 tells the game, at 6000 milliseconds from the start of the mission, display the message “Admiral Rytag: Welcome BobaFett.” For 5000 milliseconds. The <END> denotes the end of the command, and must be put at the end of every line or the game might crash. Notice also that each parameter (the 6000, 5000, and message) are all seperated by spaces. There is a space that seperates the message “Admiral Rytag..” with <END>. These spaces must be inserted between parameters or the game will crash.

Indeed, if you had a bug in your script, it would require tedious amounts of time to find them, especially in big missions. But time did not allow me to refine the game’s mission reader code, so I shall present it as is, with all its complexities. If someone wants to make a quick mission builder, or mission wizard program that generates fast mission scripts, that would be great. The following is a library of all the scripts implemented so far, version 1.0.

All missions use the .mis extension. Bobafett can only read .mis. In truth, .mis files are .txt files so you can open them with a regular text editor. Currently, the Beta version of the game will only take missions that have been entered into the game’s database(There are 4 missions). I will be adding a ‘select custom mission’ option in the future release.

Contents:

· Timed Messages

· Artificial Intelligence Classes

· Object Types
· Object Instances
· Doodad Types
· Starting Positions
· Capitol Ship Instances
· Triggers (Not complete)
· Conditions
· Action
Timed Messages:

Description: Timed messages show up during the game as onscreen text dialogues.

Timed messages must be contained within the following block of code:

#TIMER_MESSAGES

> code here

#END_TIMER_MESSAGES

the syntax is as follows:
>
StartTime
Duration
Message
<END>

example 1:

#TIMER_MESSAGES

> 6000
5000
Admiral Rytag: Welcome BobaFett. <END>

#END_TIMER_MESSAGES

example 2:

#TIMER_MESSAGES

> 6000
5000
Admiral Rytag: Welcome BobaFett. <END>

> 11000
5000
Admiral Rytag: Say hello damn you. <END>

#END_TIMER_MESSAGES

Artificial Intelligence Classes

Description: AI classes are types of brains that an object instance can have. For example, after constructing a AI class called AlphaSquad1 that patrols a rectangular area, multiple Objects can all be associated with this class and do exactly what AlphaSquad1 is scripted to do. AI classes tell the behavior patterns of objects. To use an AI class, it must be linked to an object during that object’s creation. See Object Instances.

AI Classes must be contained within the following block of code:

#AICLASSES
> code here

#END_AICLASSES

Syntax is as follows:

> NameOfClass
BehaviorPattern1 BP2
BP3
BP4
BP5
B6 BP7

The NameOfClass will be what indentifies the AIClass. The Behavior patterns are the functions that class can do. Here are the currently implemented functions and their descriptions:

Note: All parameters are seperated with spaces, not commas.

Transport(X Y)

Will transport to point (x,y). Will advance to the next level of Behavior Pattern if attacked. Will circle around (x,y) upon arrival.

HuntFett() //empty space in between parentheses

Will Track down Fett. Once in range, will advance to the next level of Behavior Pattern.

Evasive10() //empty space in between parentheses

If Fett is in range, AIClass will manuver to the path that will take

Out of Fett’s range. When Fett is out of range, it will return to

The object’s pervious behavior pattern.

GuardPoint(X Y SpeedPercentage)

Circles around the point X, Y with a Speed equal to the SpeedPercentage of the particular vehicle’s maximum speed.

If fired upon, or anything is in range, it will move to the next behavior pattern.

GuardArea(X1 Y1 X2 Y2)

Ramdomly guards the area bound by the two corners, (x1, y1)

And (x2, y2). If fired upon or any enemy ships are in range, it

Will move to the next behavior pattern.

Patrol(NumberOfWayPoints WPX1 WPY1 WPX2 WPY2 … WPX7 WPY7)

Moves around the number of waypoints defined by NumberOfWayPoints. Example: Patrol(2 0 0 100 100) will make the vehicle patrol the points (0,0) and (100,100). Example: Patrol(4 0 0 100 100 300 100 –100 300) will patrol the 4 points in order, (0,0) (100,100) (300,100) (-100,300) and come back to (0,0) upon arriving at (-100,300). Will advance to the next behavior if fired upon or an enemy is in range.

Escort(VirtualNumberOfObjectToEscort
SpreadRangeOfEscort)

The Virtual Number or Vnum is the identification of the object to escort. The spread range is the distance to circle around the objet. Will advance to the next level if fired upon or if an enemy is in range.

Aggressive(SkillLevel
DurationOfAggressionRun)

During this mode, the ship will hunt down and try to shoot any

Ship it is targeting. If there is no ship, or the ship is destroyed, Aggressive mode goes back to the previous behavior mode. SkillLevel is how good the fighter is. The range is 0 through 10. 0 means the fighter will hardly miss any shots. Duration is the duration of the attack before it returns to the previous behavior pattern. Aggressive will go on for Duration seconds or until a ship is destroyed before returning to the previous behavior level.

None() //empty space in between parentheses

Denotes an empty Behavior pattern. Returns to the previous behavior mode if anything advances here.

Example of AIClasses:
#AICLASSES
> PatrolTie

Patrol(2 0 0 2000 0) Aggressive(3 5000) None() None() None() None() None() <
#END_AICLASSES

Note: The commands have to be exactly one line long.

The AI Class above tells whatever Object is of type PatrolTie to Patrol the point 0,0 and 2000,0 and when fired upon, or sees an enemy, to go to Aggressive mode with skill level 3 and duration of attack run 5000 before going back to patrol mode.

Object Types

Description: Object Instances are of a Type of Object and of a Type of AIClass. The Object Types defines these types of Objects.

Object Types must be contained within this block of code:

#OBJECT_TYPES

> code here

#END_OBJECT_TYPES

Syntax is as follows:
> Name
SpriteID TurnT Life Grav Ener XpldSpread XpldNumber XpldDelay XpldMBool Maxspeed Alignment LaserType

Name must be one word made of characters and is the name of the Object Type.

ID is the name of the sprite to use, or the model to use for this object types. As of version 1.0, these are the available models to use:
awing

bwing

corvette

ewing

junk1

outrider

planets

shuttle

slave1

stardestroyer

t16

tiefse

xwing

ywing

zhunter

TurnT is how fast these vehicles can turn. TurnTime is in milliseconds. Fighters usually have a TurnT of 50-70 while Big ships range from 400 – 10000000(meaning no turning).

Life Grav and Ener do not mean anything currently. They should be set to 0.

XpldSpread is the radius of the explosion after the ship has died.

XpldNumber is the number of explosions that will be rendered.

XpldDelay is for how long in milliseconds the explosion will last.

XpldBool can be either 0 or 1. 1 means the explosion moves with the last direction of the ship. 0 means the explosion stays where the ship was destroyed.

MaxSpeed is the maximum speed of the object type. Max speeds range from 0.0 to 2.0. The (.) must be included! Typical Fast ships are of MaxSpeed 0.9.

Alignment is the Alignment type of this object. It can be either OPPONENT, ALLIES or NEUTRAL exactly as it is spelled. Opponents are opponents of Fett, Allies, allies of Fett and so on.

LaserType is a tricky variable to enter. You must write the Laser type in this syntax:
Laser(Color Damage)

The color can be:
laser_red

laser_green

laser_orange
Typical damages range from 0-500 but can be more or less (Negative damage is not yet tested).

Instead of Laser(Color Damage) you can also write Ion(Damage) and the primary weapon will become a blue ion beam with a system killing damage of Damage.

Example of an Object Type:

#OBJECT_TYPES
> tie

tiefse

70
0
0
0
2

35
150

1

.85

ALLIES

Laser(laser_green 130) <

#END_OBJECT_TYPES

Note: the < closes the the command and must be there.

The above line creates an object type called tie, using the Tiefse sprite(tie fighter special edition sprite), turntime 70, ally of Fett, maxspeed .85, Moving explosion, laser color green and damage 130.

Example 2 of an Object Type:

> StarDestroyer
stardestroyer
50000000 0
0
0
8

50
200

1

.25

ALLIES

Ion(200) <

Note: the < closes the the command and must be there.

The above line creates a stardestroyer that does not turn(5000000 turning time) and has a speed of .25, a friend of fett, and uses the Ion Cannon as its weapon. Note that to create a real capitol ship, you cannot use the ObjectInstance script, you must look at the CapitolShipInstance script.

Object Instances

Description: An instance of an object. One individual object in the game.

Object Instances must be contained within the following block of code:
#OBJECTS

> code here

#END_OBJECTS

Syntax:

> Vnum ObjecType Degree X Y LifePoints CreationSpeed CreateTime AIClass

Vnum is the virtual number to reference the particular object later on. Note a group of objects with the same Vnum can be referenced to. ObjectType is the name of the object type of this particular object instance (see Object Types). Degree is the degree it starts at. It must be set to 0 for now. X and Y are the starting coordinate positions of the object. LifePoints are the number of Damage points an object can take before destruction. CreationSpeed is the speed it is moving upon creation. Typically 0.15. CreateTime is the time after the mission began to create the object in milliseconds. AIClass is the Artificial Intelligence Behaviors that will control the craft (see Artificial Intelligence Classes).

Doodads

Description: Doodads are objects that require no intelligence to operate, i.e. planets.(Asteroids can be made using the Doodad class but can also be made using a regular object class set to NEUTRAL and AIClass GuardArea).

Doodads require a Doodad Type and A Doodad Instance, like Objects and their object types and instances. Here’s an example of a Doodad Type block of code:
#DOODAD_TYPES

;Name
sprite_string l g
e
impact
delay(ms)

> Dantooine
planets
 0 0
0
0
 2000000000

#END_DOODAD_TYPES

l, g and e should always be 0. Impact is the impact damage but I forget if it has been re-implemented yet. Delay should be set very very high as it is rotation time of the planets’ sprite, and since each sprite is a collection of 16 different planets or so, the frame should not change during the game. Dantooine is the name of the type which will later be referenced by an doodad instance.

Here’s the block of code for a particular doodad instance:
#DOODADS

;vnum
type
deg x y fspeed createtime

> 1000
Dantooine
50
0
0
0.0

0

#END_DOODADS

the vnum is the doodad reference, which will not actually be used ever since nothing is implemented to use it. The type of Doodad is called Dantooine, which we defined above. The frame Number, of doodad is associated with the Deg, or degree variable. A sprite might have 16 images stored on it for 16 different degrees. A planet sprite will have 16 images with 16 different planet. Varying the degree from 0 to 360 will display different types of planets depending on how many planets there are in a sprite. Fspeed should be 0, x and y is the location of the doodad and create time is usually 0.

Starting Position

All missions need starting positions. Here is the block of code to show a starting position for Fett:

#START_POSITION

>0 –3000

The above code tells the mission to start Fett at (0,-3000). Unlike all other blocks of code, the START_POSITION does not require an #END statement. Just write the above code in between other Blocks of code.

Capitol Ships Instances

Description: Capitol ships can fire using many arrays of guns, and can fire at any angle no matter what angle the ship itself is facing. Capitol ship instances are like Object instances and use Object types and AIClasses.

CapitolShip code must be contained within this block of code:
#CAPITOL_SHIPS
> code here

#END_CAPITOL_SHIPS

unlike OBJECTS, which require:
> code here <

an extra, < closing statement, Capitol ships do not require that. The reason is that I coded these two seperately, and since I am presenting the mission code as is for now, this is how it will be. In future versions I will clean up the coding and make things simpler.

Here is the syntax:
> Vnum ObjectType Deg X Y LifePoints Fspeed CreateTime AIClass NumberGuns MaxBurstsPerShot SystemStrength
Vnum is for referencing capitol ship instances

ObjectType is the type of object

Deg is like Deg in Doodads, tells what angle the ship is facing

X and Y are the starting points

LifePoints are Hitpoints

Fspeed is the speed usually 0.25 max for capitol ships

CreateTime is creation time after game begins in milliseconds

AI Class is the Behavior pattern for the ship defined in AIClasses(see Artificial Intelligence Classes)

NumberGuns tells the number of guns the ship has. Can range from 1 through 7.

MaxBurstsPerShot is how fast the guns fire. Experiment to see.

SystemStrength is the number of Ion Damage the ship can take before becoming disabled. All regular Objects have common default systemstrength. Capitol ships’ systemstrength must be defined by the script.

Example:

#CAPITOL_SHIPS

> 5
TantiveIV

90
0
0
1000000
0.15
0
RandomArea
7

5

50000

#END_CAPITOL_SHIPS

TRIGGERS!!!

The main driving force of Slave 1: Shadow Hunter are triggers. Triggers have conditions that must be met and actions that will be taken if these conditions are met. A single Trigger looks like this:
#TRIGGER
> condition C1

> condition C2

> … condition CN

> action A1

> … action AN

#END_TRIGGER

An example of a trigger:
#TRIGGER
> condition Always()

> action CreateQuantityUnitsLocation(1 2 tiefighters 2 8000 Tie1AI -10000 -30000)

#END_TRIGGER

This trigger’s condition is Always. Triggers, unless they have a:
> action PreserveTrigger()
Line will only be executed ONCE. So this trigger will be executed once, during the beginning of the mission, once the Always() is met. The action of this trigger is to CreateQuantityUnitsLocation, a trigger action defined in the Trigger->Action library of this manual. It basically creates a couple of tiefighters at location 10000, -30000. That’s the jist of triggers. Actions and conditions can be combined in anyway, but conditions must be on top, and actions must be on the bottom part of the Trigger code block. Also, the actions will be executed in reverse order, starting with the bottommost action.

The following are a list of conditions and actions available for triggers in version 1.0:

CONDITIONS:

CommandsQuantityUnits();

CommandsQuantityUnitsLocation();

SufferedQuantityUnits();

SufferedQuantityUnitsLocation();

Always();

BringUnitsLocation();

TimeElapsed();

KillsQuantityUnits();

KillsQuantityUnitsLocation();

KillsQuantityVnum();

KillsQuantityVnumLocation();

BringVnumLocation();

CommandsQuantityVnum();

CommandsQuantityVnumLocation();

SufferedQuantityVnum();

SufferedQuantityVnumLocation();

CountdownTimer();

SwitchSet();

DisablesQuantityUnits();

DisablesQuantityUnitsLocation();

DisablesQuantityVnum();

DisablesQuantityVnumLocation();

RandGen();

VnumInRange();

BringQuantityVnumVnumLocation();

ACTIONS:

GiveCredits();

DisplayPicture();

FailMission();

SetNextMission();

DisplayMessage();

CreateQuantityUnitsLocation();

CreateCapitolShipsLocation();

Defeat();

Victory();

Draw();

KillAllUnits();

KillAllUnitsLocation();

SetSwitch();

SetTimer();

ShowRadarPing();//not implemented yet

PreserveTrigger();

PauseTimer();

UnPauseTimer();

RemoveQuantityUnits();

RemoveQuantityVnum();

RemoveQuantityUnitsLocation();

RemoveQuantityVnumLocation();

ChangeVnumProperties();

ChangeVnumPropertiesLocation();

CompleteMission();

FailMission();

CreateQuantityUnitsVnumLocation();

MatchVnumSpeedVnum();

Website: www.bobafettfanclub.com/GAMES/slave1/index.shtml

